Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Rachid Ouarsal, ${ }^{\text {a }}$ Aziz Alaoui
Tahiri, ${ }^{\text {a }}$ Mohammed Lachkar, ${ }^{\text {a }}$ Michal Dusek, ${ }^{\text {b }}$ Karla Fejfarováb and Brahim El Balia*
${ }^{\text {a }}$ Départment de Chimie, Faculté des Sciences Dhar Mehraz, BP1796 Atlas 30003, Fés, Morocco, and ${ }^{\mathbf{b}}$ Institute of Physics, Cukrovarnicka 10, 16253 Praha 6, Czech Republic

Correspondence e-mail:
belbali@eudoramail.com

Key indicators
Single-crystal X-ray study $T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{Mg}-\mathrm{O})=0.002 \AA$
R factor $=0.027$
$w R$ factor $=0.066$
Data-to-parameter ratio $=10.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Sodium magnesium tris(dihydrogenphosphite) monohydrate, $\mathrm{NaMg}\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$

The structure of $\mathrm{NaMg}\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ belongs to the isotypic dihydrogenphosphite monohydrate series $\mathrm{Na} M\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)_{3}$-$\mathrm{H}_{2} \mathrm{O}(M=\mathrm{Mn}, \mathrm{Co}$ and Zn$)$, with alternating NaO_{6} $\left[d_{\mathrm{av}}(\mathrm{Na}-\mathrm{O})=2.466(2) \AA\right]$ and $\mathrm{MgO}_{6}\left[d_{\mathrm{av}}(\mathrm{Mg}-\mathrm{O})=\right.$ 2.086 (2) \AA] octahedra, crosslinked by $\mathrm{H}_{2} \mathrm{PO}_{3}$ pseudo-pyramids $\left[d_{\mathrm{av}}(\mathrm{P}-\mathrm{OMg})=1.530(2) \AA\right.$ and $d_{\mathrm{av}}(\mathrm{P}-\mathrm{OH})=$ 1.575 (2) A].

Comment

In the mixed phosphate system $\mathrm{NaO}-\mathrm{MO}-\mathrm{H}_{3} \mathrm{PO}_{3}$, where M is a bivalent $3 d$ metal, only three compounds are known, viz. $\mathrm{Na} M\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, with $M=\mathrm{Mn}($ Chmelikova et al., 1986), and $M=\mathrm{Co}$ (Kratochvíl et al., 1982), and $\mathrm{NaZn}\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (Ouarsal et al., 2002). In the present work, we describe the synthesis and crystal structure of the fourth member of the family, $\mathrm{NaMg}\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, as part of our systematic investigation of this system.

The crystal structure of the title compound can be described as a three-dimensional network made of of $\left[\mathrm{NaO}_{6}\right]$ and $\left[\mathrm{MgO}_{6}\right]$ octahedra sharing edges by way of O3..O8 and O6 $\cdots \mathrm{O} 7$ pairs, as shown in Fig. 1. Cohesion of these polyhedra is further reinforced by the presence of $\mathrm{O}-\mathrm{P}-\mathrm{O}$ bridges of the $\left[\mathrm{HPO}_{3} \mathrm{H}\right]$ units, through hydrogen bonds between the water oxygen and H atoms attached to O atoms of the phosphite groups. These bonds force the zigzag propagation of the chains along [010]. The chains are crosslinked by the phos-

Figure 1
ATOMS (Dowty, 1999) projection of the crystal structure of $\mathrm{NaMg}\left(\mathrm{H}_{2}\right.$ $\left.\mathrm{PO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$. Polyhedra: blue $\left(\mathrm{MgO}_{6}\right)$, pink $\left(\mathrm{NaO}_{6}\right)$ and yellow $\left(\mathrm{PO}_{3}\right)(\mathrm{H}$ atoms are omitted for clarity).

Received 13 January 2003 Accepted 3 February 2003 Online 21 February 2003

Figure 2
Coordination of Na and Zn in the crystal structure of $\mathrm{NaMg}\left(\mathrm{H}_{2}\right.$ $\left.\mathrm{PO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$. Atom colours are as for their polyhedra in Fig. 1; grey spheres (H). Displacement ellipsoids are drawn at the 50% probability level.
phite moieties: the P1- and P2-centered groups link adjacent chains in the a and b directions, respectively, while the P3centered group acts in both directions. The $\mathrm{P}-\mathrm{OH} \cdots \mathrm{O}$ and $\mathrm{O} w \mathrm{H} \cdots \mathrm{O}$ (w is water) hydrogen bonds also stabilize the structure, as previously described by Chmelíková et al. (1986).

Phosphorous ($\mathrm{P}^{\mathrm{III}}$) atoms occupy three non-equivalent crystallographic positions. The surrounding tetrahedra consist of one hydroxyl, two non-hydroxyl O atoms and an H atom. Average $\mathrm{P}-\mathrm{O}$ distances are $1.541,1.525$ and $1.525 \AA$, respectively. Average $\mathrm{P}-\mathrm{H}$ and $\mathrm{P}-\mathrm{O}(\mathrm{H})$ distances are 1.25 and $1.575 \AA$, respectively. They are similar to their equivalents in the homologous mixed phosphites, 1.500, 1.26 and $1.574 \AA$, respectively in $\mathrm{NaMn}\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ and 1.501, 1.32 and $1.572 \AA$, respectively in $\mathrm{NaZn}\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$.
Mg^{2+} is octahedrally coordinated by five O atoms of the phosphite anions and one oxygen (O7) of the water molecule. Average $\mathrm{Mg}-\mathrm{O}$ is $2.086 \AA$, similar to that of $2.098 \AA$ in $\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Corbridge, 1956). The Mg^{2+} ions are isolated in the structure, with $\mathrm{Mg} \cdots \mathrm{Mg}=5.031$ (2) \AA, that is significantly shorter than the corresponding distance of $5.957 \AA$ in $\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.
Na^{+}has a distorted octahedral coordination, with one $\mathrm{Na}-$ O distance longer than the others. The average $\mathrm{Na}-\mathrm{O}, 2.466 \AA$, is similar to values found in isostructural phosphites: NaZn $\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O} \quad(2.451 \AA), \quad \mathrm{NaMn}\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O} \quad(2.442 \AA)$. The bond-valence sum (Brown, 1996) for sodium, 1.15 (ideal value $=1.00$), indicates that its valence is fully saturated. Fig. 2 shows the neighborhood of the Mg and Na atoms.

Experimental

The crystals were prepared by mixing the following two aqueous solutions: $\left[\mathrm{NaOH}(2.5 \mathrm{mmol})+\mathrm{H}_{3} \mathrm{PO}_{3}(2.5 \mathrm{mmol})\right], \quad[\mathrm{MgO}$ $\left.(2.5 \mathrm{mmol})+\mathrm{H}_{3} \mathrm{PO}_{3}(1.5 \mathrm{mmol})\right]$. The mixture was stirred for 6 h and the resulting clear solution was left at room temperature for a few days. Large lozenge-shaped crystals were deposited; they were filtered off and washed with a solution of 80% ethanol.

Crystal data

$\mathrm{H}_{8} \mathrm{MgNaO}_{10} \mathrm{P}_{3}$
$M_{r}=308.3$
Orthorhombic, Pbca
$a=14.806$ (1) \AA
$b=9.078(2) \AA$
$c=14.811$ (2) \AA
$V=1990.8(5) \AA^{3}$
$Z=8$
$D_{x}=2.056 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $\mathrm{K} \alpha$ radiation
Cell parameters from 45 reflections
$\theta=10-15^{\circ}$
$\mu=0.74 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Irregular polyhedron, colorless
$0.3 \times 0.2 \times 0.1 \mathrm{~mm}$

Data collection

Oxford Instruments KM-4 point
\quad detector diffractometer
$\theta / 2 \theta$ scans
Absorption correction: Gaussian
$\quad(J A N A 2000 ;$ Petricek \& Dusek,
$2000)$
$T_{\min }=0.806, T_{\max }=0.930$
10838 measured reflections
2902 independent reflections
Refinement
Refinement on F^{2}
$R\left[F^{2}>3 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.066$
$S=1.29$
1760 reflections
168 parameters

1760 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.058$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-20 \rightarrow 20$
$k=0 \rightarrow 12$
$l=-20 \rightarrow 20$
3 standard reflections every 100 reflections intensity decay: 1.3%

All H -atom parameters refined $w=1 /\left[\sigma^{2}(I)+0.0016 I^{2}\right]$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\max }=0.38 \mathrm{e}_{\mathrm{m}} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.56 \mathrm{e}^{-3}$

Table 1

Selected geometric parameters (\AA).

P1-O3	$1.5004(16)$	$\mathrm{Mg} 1-\mathrm{O}^{\mathrm{i}}$	$2.1112(18)$
$\mathrm{P} 1-\mathrm{O} 5$	$1.5864(18)$	$\mathrm{Mg} 1-\mathrm{O}^{\mathrm{ii}}$	$2.0755(17)$
$\mathrm{P} 1-\mathrm{O} 8$	$1.5003(17)$	$\mathrm{Mg} 1-\mathrm{O}^{\mathrm{iii}}$	$2.0673(18)$
$\mathrm{P} 1-\mathrm{H} 3$	$1.26(3)$	$\mathrm{Mg} 1-\mathrm{O} 6$	$2.0594(17)$
$\mathrm{P} 2-\mathrm{O} 1$	$1.4970(17)$	$\mathrm{Mg} 1-\mathrm{O} 7$	$2.1498(19)$
$\mathrm{P} 2-\mathrm{O} 2$	$1.5118(17)$	$\mathrm{Mg} 1-\mathrm{O} 8$	$2.0529(17)$
$\mathrm{P} 2-\mathrm{O} 9$	$1.568(2)$	$\mathrm{Na} 1-\mathrm{O} 1$	$2.3303(19)$
$\mathrm{P} 2-\mathrm{H} 2$	$1.25(3)$	$\mathrm{Na} 1-\mathrm{O} 3^{\mathrm{iv}}$	$2.3481(19)$
P3-O4	$1.5056(17)$	$\mathrm{Na} 1-\mathrm{O} 6$	$2.4408(19)$
P3-O6	$1.5005(16)$	$\mathrm{Na} 1-\mathrm{O} 7$	$2.503(2)$
P3-O10	$1.575(2)$	$\mathrm{Na} 1-\mathrm{O} 8^{\mathrm{ii}}$	$2.3335(18)$
P3-H6	$1.29(3)$	$\mathrm{Na} 1-\mathrm{O} 10^{\mathrm{v}}$	$2.835(2)$

Symmetry codes: (i) $\frac{3}{2}-x, \frac{1}{2}+y, z$; (ii) $2-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $2-x, 1-y,-z$; (iv) $x, y-1, z$; (v) $2-x,-y,-z$.

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 7-\mathrm{H} 7 \cdots \mathrm{O} 10^{\text {vi }}$	0.87 (3)	2.17 (3)	3.020 (3)	168 (3)
$\mathrm{O} 10-\mathrm{H} 4 \cdots \mathrm{O}$	0.77 (4)	1.82 (4)	2.583 (3)	174 (5)
$\mathrm{O} 7-\mathrm{H} 1 \cdots 5^{\text {vii }}$	0.74 (4)	2.05 (4)	2.777 (2)	165 (4)
$\mathrm{O} 9-\mathrm{H} 5 \cdots \mathrm{O} 4^{\text {vii }}$	0.77 (4)	1.98 (4)	2.721 (3)	163 (4)
$\mathrm{O} 5-\mathrm{H} 8 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.91 (3)	1.71 (3)	2.614 (2)	175 (3)

Symmetry codes: (i) $\frac{3}{2}-x, \frac{1}{2}+y, z$; (vi) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (vii) $\frac{3}{2}-x, y-\frac{1}{2}, z$.
Data collection: KM4B8 (Galdecki et al., 1996); cell refinement: KM4B8; data reduction: JANA2000 (Petricek \& Dusek, 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1997); program(s) used to refine structure: JANA2000; molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: JANA2000.

inorganic papers

B. El Bali thanks Professor R. Glaum (University of Bonn, Germany) and Professor H. Allouchi (University of Tours, France) for their kind collaboration.

References

Altomare, A., Cascarano, C., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. \& Spagna, R. (1997). SIR97. University of Bari, Italy.
Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480.

Chmelíková, R., Loub, J. \& Petrícek, V. (1986). Acta Cryst. C42, 1281-1283. Corbridge, DEC (1956). Acta Cryst. 9, 991-994.
Dowty, E. (1999). ATOMS for Windows and Macintosh. Version 5. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Galdecki, Z., Kowalski, A., Kucharczyk, D. \& Uszynski, I. (1996). KM4B8. Kuma Diffraction Ltd, Wroclaw, Poland.
Kratochvíl, B., Podlahová, J., Habibpur, S., Petrícek, V. \& Malý, K. (1982). Acta Cryst. B38, 2436-2438.
Ouarsal, R., Alaoui, T. A., El Bali, B., Lachkar, M. \& Harrison, W. (2002). Acta Cryst. E58, i23-i25.
Petricek, V. \& Dusek, M. (2000). JANA2000. Institute of Physics, Prague, Czech Republic.

